Giải phương trình bậc 4 tổng quát


Xét phương trình bậc bốn:

x^{4} + ax^{3} + bx^{2} + cx + d = 0 \qquad (1)

(1) {\Leftrightarrow} {x^{4} + ax^{3} = - bx^{2} - cx - d}

{\Leftrightarrow}{x^{4} + ax^{3} + { \frac{a^{2}x^{2}}{4}}= {({ \frac{a^{2}}{4}}- b)}x^{2} - cx - d}

{\Leftrightarrow}{(x^{2} + { \frac{ax}{2}})^{2} = {({ \frac{a^{2}}{4}}- b)}x^{2}- cx - d} (*)

Ta đưa vào phương trình ẩn phụ y như sau:

Cộng hai vế của phương trình (*) cho (x^{2} + { \frac{ax}{2}}).y + { \frac{y^{2}}{4}} . Ta có:

{(x^{2}+{ \frac{ax}{2}})^{2}+(x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}= (x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}+{({ \frac{a^{2}}{4}}-b)}x^{2}-cx-d}

{\Leftrightarrow}{(x^{2}+{ \frac{ax}{2}}+{ \frac{y}{2}})^{2}=(x^{2}+{ \frac{ax}{2}})y+{ \frac{y^{2}}{4}}+{({ \frac{a^{2}}{4}}-b)}x^{2}-cx-d} (**)

Ta tìm giá trị y sao cho vế phải là  biểu thức chính phương (trường hợp vế phải của (*) đã là biểu  thức chính phương thì việc đưa vào biến phụ y là không cần thiết). Muốn vậy, vế phải phải có nghiệm kép theo biến x.

Hay: \Delta = ({ \frac{ay}{2}}-c)^{2} - 4({\frac{a^{2}}{4}}-b+y).({ \frac{y^{2}}{4}}-d) = 0

Nghĩa là, ta tìm y là nghiệm của phương trình:

y^{3} -by^{2}+(ac-4d)y-[d(a^{2}-4b)-dy] = 0 (***)

Với giá trị y_{0} vừa tìm được thì vế phải của (**) có dạng ({\alpha}x+{\beta})^{2}

Do đó, thế y_{0} vào phương trình (**)  ta có:

{(x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}})^{2}}={ ({\alpha}x+{\beta})^{2}} (****)

Từ (****) ta có được 2 phương trình bậc hai:

{x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}}}={ {\alpha}x+{\beta}} (a)

{x^{2}+{ \frac{ax}{2}}+{ \frac{y_{0}}{2}}}={ -{\alpha}x-{\beta}} (b)

Từ đây, giải 2 phương trình (a), (b) ta sẽ có 4 nghiệm của phương trình bậc 4 tổng quát ban đầu.

P/s: từ phương trình (***) ta sẽ có 3 giá trị y, và với mỗi giá trị y có được ta sẽ có 4 giá trị x. Như vậy, tổng cộng ta có 12 giá trị x là nghiệm của phương trình (1). Tuy nhiên, do (1) là phương trình bậc bốn nên chỉ có đúng 4 nghiệm (thực hoặc phức). Do đó, các giá trị x tương ứng với y0 sẽ phải trùng lại với các giá trị x tương ứng với y1 và y2. Vì vậy, từ (***) ta chỉ cần tìm 1 giá trị yo là đủ.

About these ads

12 comments on “Giải phương trình bậc 4 tổng quát

  1. ban oi ban giai bai nay ho mih dc k?
    Cho ham so y=-x^4 + 2x^2 -1 (C) Tìm tat ca cac diem thuoc truc tung sao cho tu do co the ke dc ba tiep tuyen voi do thi (C)

  2. bai nay anh giai dc tu nam hoc lop 8 a ?
    bai giai ni
    ?Cho ham so y=-x^4 + 2x^2 -1 (C) Tìm tat ca cac diem thuoc truc tung sao cho tu do co the ke dc ba tiep tuyen voi do thi (C)

  3. giải giùm em bài toán ni với: 3(x^2-x+1)=(x+sprt(x^2-1))
    khó quá. làm ơn, bài này không phải dể, tìm mọi cách mà bó tay

    • chia hai vế cho x^2 ta đuọc :
      X^2 +4/x^2 + 2(x+2/x)+5=0
      đặt t = x+ 2/x => x^2 + 4/x^2 = t^2 -4
      ta đuoc phươngg trình bậc hai theo t , giải , tim đuọc t sau đó tìm ra x

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s